
Achieving Ilities 10/18/99

1

Achieving Ilities
Robert E. Filman

Advanced Technology Center West Coast Laboratories
Lockheed Martin Missiles and Space Microelectronics and Computer
3251 Hanover Street O/H1-41 B/255 Technology Corporation

Palo Alto, California 94304 2099 Gateway Place, Suite 450
San Jose, California 95110

bob.filman@lmco.com filman@mcc.com

This paper discusses the use of aspect-oriented programming
technology to impose desirable system properties on component-
based, distributed systems.

Problems of compositional architectures
Traditionally, software application development has been a monolithic process. An or-
ganization building a software system presumed to know how it wanted that system to
behave. The requirements for that behavior would flow down to the construction of the
underlying modules. Since the modules were being built specifically for the system in
question, it was “straightforward” to get their developers to obey proscribed rules and
conform to defined standards. To the extent that the system used an externally provided
component such as a GUI or database, the behavior of that component would be ascer-
tained and the use of that component within the architecture of the system shaped to
match the actual behavior.

Life has gotten more complex. The future, if not, the present, is, after all, components.
Technologies such as CORBA and HTML provide the glue for building applications
from components. We have the perpetual promise that someday a market for compo-
nents of finer granularity than “the database” will emerge. We want to develop systems
from components. However, we don’t want the artifacts of a particular component
manufacturer to permeate our designs, rendering us eternally dependent on the whims,
demands and destiny of that vendor. We want components that obey our policies; we
don’t want to have to pervert our systems to match the policies of the components. And
we want ways to federate existing systems while still maintaining overarching rules and
procedures.

Distributed systems introduce even more complexity. Developing distributed sys-
tems is in itself a more difficult task because:

• Distributed systems are non-deterministic. Programmers have a hard enough
time figuring out the behavior of a centralized, serial system. Tracking lots of
concurrent possibilities exacerbates debugging. Similarly, it can be hard to as-
sure that of the many things that are eligible to receive resources in a concurrent
system, the resources go to the most worthy.

• Distributed systems are prone to incomplete failures. As Leslie Lamport has
remarked, a distributed system is one where the failure of a system you didn’t
even know existed can impact your work. In a conventional, single process sys-
tem, failures terminate the program. One didn’t need to write a recovery from a
procedure call that did not return, because the catastrophic failure of the equip-

Achieving Ilities 10/18/99

2

ment of the called procedure was a catastrophic failure of one’s own equipment.
In a distributed system, one can try to do something and then have it just not
happen (or even partially happen). The caller will still be running and will re-
quire mechanisms for dealing with this situation. Such mechanisms can be hard
for the ordinary programmer to create.

• Distributed systems are less secure. When the elements of a system are distrib-
uted and communicate over more-public channels, there are greater opportuni-
ties for intrusion and subversion. Getting security right is a task that often seems
to elude security experts, no less ordinary application programmers.

What can be done to simplify distributed computing?
1) We can provide mechanisms so that computing with distributed elements does

not itself require extending the intellectual space of programming—program-
ming distribution can be made look like ordinary coding.

2) Concurrent algorithms are genuinely difficult to program correctly. We can pro-
vide implementations of such algorithms and arrange to have them invoked ap-
propriately, shielding the user from their interactions.

We can’t hide all the warts of distributed computing. However, we suggest below
mechanisms that can substantially reduce the pain of developing distributed systems.

Requirements
What kinds of systems do we want to build? Our applications should exhibit reliability,
security, scalability, extensibility, manageability, maintainability, interoperability, com-
posability, evolvability, survivability, affordability, understandability, and agility. (We
note we’ve forgotten a few.) Let us label these qualities ilities. The keen reader is likely to
ask, “So what exactly do you mean by, say, reliability?” We take the point of view that
reliability is what the system specifier says it is. This person makes some requirements
about system implementation that, if followed, will realized reliability. Some ilities are
thus manifestations of properly defined and implemented requirements.

To understand what ilities we can achieve, we first must consider the possible kinds
of requirements:

• Functional. Functional requirements deal primarily with the input-output be-
havior of a system. For example, a requirement that “The application shall have
a way for the user to save the current state of processing,” is a functional re-
quirement that is likely realized in a specific module that implements a menu
selection with code that writes to the disk. There is usually a one-to-one (or one-
to-small-finite-number-of-places) mapping between functional requirements
and the code modules. Conventional code development processes handle func-
tional requirements well.

• Aesthetic. Aesthetic requirements are such that satisfaction is in the eye of the
beholder. Lacking artificial intelligence, automation has nothing useful to add to
a requirement such as “Use meaningful variable names.”

• Systematic. Systematic requirements pervade the behavior of the system, but
can be realized by “doing the right thing” in “all the right places.” For example,
a requirement that all communications be encrypted with 128-bit DES can be re-
alized by encrypting the data around every communication call (and decrypting
around every reception.) This is an issue of good programming hygiene. If
communications calls are recognizable system elements, one could presumably

Achieving Ilities 10/18/99

3

write a system that read a system’s source code and checks to see if such a re-
quirement is satisfied. [1] (One could even write such a system to automatically
fix the ones that weren’t.) The primary difficulty in satisfying systematic re-
quirements is getting all the programmers to behave systematically. We have
considerable leverage in automating systematic requirements and the ilities that
follow from them.

• Combinatoric. Combinatoric requirements constrain the complex interaction of
parts within a whole. Determining the satisfaction of combinatoric requirements
is typically computationally intractable. An example is a requirement that all re-
quests be responded to within five seconds. Given a presumed request distribu-
tion load, the worst-case response time is an analytical question. However, actu-
ally determining whether a system satisfies this requirement is the satisfaction
of the requirement is likely to be computationally arduous.

Achieving ilities through controlling communication

Under the auspices of MCC, the Object Infrastructure Project is developing mechanisms
to make distributed computing substantially easier. The intellectual thesis of this work is
that certain interesting ilities (security, reliability, manageability, quality of service) can
arise by proper manipulation of the communications between components and the sig-
nificant events of an object’s lifecycle.1 We are currently creating a set of tools to realize
this transformation from specified ilities to controlled communications, a reference archi-
tecture (set of rules defining component interactions) and set of frameworks (realizations
of that architecture in particular environments) to demonstrate this thesis.

A key observation of this work is that communication is not confined to the “actual
text of a message” (for example, the procedure being called and its arguments) but also
allows arbitrary additional annotation---we presume to control both sides of the com-
munication act.

Our efforts can be seen as an instance of aspect-oriented programming [2] in that we
are separating the tasks of creating the actual domain application from the code that
produces security, reliability, etc. and realizing (through proprietary mechanisms) the
weaving together of this code appropriately. Our efforts can also be seen as an instance
of the perpetual effort in computer science to raise the “level” of supporting substrates.
Not that long ago, writing a graphic user interface to a program would consume 80% of
the programming effort. Now graphic user interface builders have turned that task to
child’s play. Not that long ago, developing a distributed system required work close to
the level of network protocols and sockets. Tools such as CORBA have enabled pro-
grammers to code to the specification of objects and methods. But realizing elements
such as security or reliability are still the responsibility of the application programmer,
and likely to be done incorrectly or incompletely by most such programmers. (A pro-
grammer expert in the workings of a satellite flight control system or medical database is
unlikely to also be expert in security and replication algorithms.) This effort can thus be
seen as a way to produce the “next generation” of CORBA-like systems [3], where the

1 These ilities were selected by a committee of application domain experts long before the mechanisms
discussed here were invented. A fifth requirement for our framework, scalability, can be seen as a combi-
natoric property of a system and is not amenable to communication control.

Achieving Ilities 10/18/99

4

programmer no more worries about how to achieve security than she does about map-
ping the location of a mouse click to a window’s button.

Ilities in practice
This section considers, for each of our target ilities, how communication and lifecycle
control can be used to affect or realize that ility, and the limits of that realization.

Security
Security (at least in a software sense) is primarily a combination of access control, intru-
sion detection, authentication, and encryption. Controlling the communication process
allows us to encrypt communications, reliably send user authentication from client to
server (and pass it along to dependent requests) and check the access rights of requests,
all independent of the actual application code. Watching communications provides a
locus for detecting intrusion events [4] (though not, of course, specifying the actual algo-
rithms for recognizing an intrusion.) These mechanisms can all be imposed on a compo-
nent-based system by controlling its communications. (Such mechanisms cannot, how-
ever, prevent subverting a system’s personnel, tapping communication lines, brute-force
cracking of encryption codes, or components that cheat by opening their own socket
connections.)

Manageability
OSI defines five elements to system manageability: performance measurement, ac-
counting, failure analysis, intrusion detection, and configuration management. The first
four of these can be implemented by generating events in relevant circumstances and
directing those events to the appropriate recipients. To the extent that the semantics of
these events can be tied to communication acts (e.g., each time a routine is called, a mi-
cro-payment for that routine is processed, or the trace of inter-component messages is
sent to a system’s debugger) then they can be realized through external communication
controls. Configuration management is partially an issue of object lifecycle. Communi-
cation control can be used to dynamically determine if appropriate configurations are in
use.

Reliability
Our primary experiments in supporting reliability have centered on using replication for
reliability [5]. Replication algorithms typically need to send copies of messages to repli-
cants, but our work has also revealed that message replication is insufficient for practical
application replication. Rather, the application needs to express its operations in sym-
bolic terms, not in terms of addresses in a specific replicant’s address space.

Similarly, we believe transaction management would (practically) yield to commu-
nication control only if the managed objects provide the necessary primitives (locking
and rollback.) These points illustrate the limitations of communication control, even in
the presence of well-defined algorithms.

Quality of service
By quality of service we mean to encompass a variety of requirements for getting things
done within time constraints. The real-time community recognizes two varieties of real-
time systems, hard real-time and soft real-time. Hard real-time systems have tasks that

Achieving Ilities 10/18/99

5

must be completed at particular deadlines, or else the system is incorrect. Soft real-time
systems seek to allocate resources so as to accomplish the most important things. To
achieve hard real-time systems, one can either reserve resources and plan consumption
or use some kind of anytime algorithm. Aside from that latter, somewhat esoteric choice,
hard real-time requires cooperation throughout the processing chain (for example, in the
underlying network), for the promise of particular service can be abrogated in too many
places. That is, you can’t get hard real-time unless you build your entire system with
that in mind. It’s a combinatoric requirement.

Soft real-time quality of service is amenable to several communication control tac-
tics. These include calling the underlying system’s quality of service primitives, using
side-door mechanisms to efficiently transport large quantities of data (e.g., opening a
socket to send a movie, thereby avoiding CORBA coding and decoding), using queue
control to identify the most worthwhile thing to do next [6] and by choosing among
multiple ways of problem solving. All of these except the last are well within the scope
of communication control, and if the application supplies the alternative problem solv-
ing methods (either by replicating the problem solving sites or providing genuinely dif-
ferent algorithms) the communication control mechanism can learn (based on historical
timing data and communications with other clients) the most efficient problem solvers.

Concluding remarks
We have argued that high-level, desirable system-level properties can be achieved in a
component-based system by systematically controlling the inter-component communi-
cations and component lifecycle. Our initial experiments have lent credence to this hy-
pothesis, subject to the caveats that some algorithms (e.g., transactions) require coopera-
tion on the part of the application, and that our desire for system-level properties (e.g.,
security) must be kept within the range of definable mechanisms. Our work continues
on developing the mechanisms to automate this process and testing our thesis.

Acknowledgments
The ideas expressed in this paper have emerged from the work of the MCC Object

Infrastructure Project, particularly Stu Barrett, Carol Burt, Deborah Cobb, Phillip Foster,
Diana Lee, Barry Leiner, Ted Linden, David Milgram, Gabor Seymour, Doug Stuart and
Craig Thompson.

My thanks to Diana Lee, Ted Linden, Gabor Seymour, and Doug Stuart for com-
ments on the drafts of this paper, and to Southwest Bell, Raytheon TI Systems, Lockheed
Martin, Motorola, DoD Health Affairs Clinical Business Area, NASA Ames Research
Center, and the Defense Advanced Projects Agency for their support of this work.

References
[1] Robert E. Filman, "Applying AI to Software Renovation," Automated Software Engineering,

Vol. 4, No. 3, July 1997.
[2] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-

Marc Loingtier, and John Irwin “Aspect-Oriented Programming, ” Xerox PARC Technical Re-
port, February 97, SPL97-008 P9710042 http://www.parc.xerox.com/spl/projects/aop/tr-
aop.htm

Achieving Ilities 10/18/99

6

[3] Craig Thompson, Ted Linden and Bob Filman, “Thoughts on OMA-NG: The Next Genera-
tion Object Management Architecture,” Presented at the OMG Technical Meeting, Dublin,
Ireland, September, 1997. http://www.mcc.com/projects/oip/next_oma.html

[4] Robert Filman and Ted Linden, “Communicating Security Agents,” The Fifth IEEE-
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises---
International Workshop on Enterprise Security, Stanford, California, June 1996, pp. 86-91.

[5] Stu Barrett and Phillip Foster, “Turning Java Components into CORBA Components with
Replication,” submitted to OMG-DARPA-MCC Workshop on Compositional Software Ar-
chitectures, Monterey, California, January 6-8, 1998

[6] Diana Lee and Robert Filman, “Verification of Compositional Software Architectures,” submitted to
OMG-DARPA-MCC Workshop on Compositional Software Architectures, Monterey, California,
January 6-8, 1998

